Optical Microsensors Integration Technologies for Biomedical Applications
نویسندگان
چکیده
This paper focuses on optical integration technology and its application in optical microsensors used in biomedical fields. The integration is based on the hybrid integration approach, achieving high performance, small size and weight, and lower cost. First, we describe the key technologies used in hybrid integration, namely passive alignment technology, low temperature bonding technology, and packaging technology for realizing advanced microsensors. Then, we describe an integrated laser Doppler flowmeter that can monitor blood flow in human skin. key words: microsensors, hybrid integration, passive alignment, low temperature bonding, laser Doppler flowmetry
منابع مشابه
Multisensor Fusion and Integration
Multisensor fusion and integration is a rapidly evolving research area and requires interdisciplinary knowledge in control theory, signal processing, artificial intelligence, probability and statistics, etc. The advantages gained through the use of redundant, complementary, or more timely information in a system can provide more reliable and accurate information. This paper provides an overview...
متن کاملManufacturing and measurement of freeform optics
Freeform optics is the next-generation of modern optics, bringing advantages of excellent optical performance and system integration. It finds wide applications in various fields, such as new energy, illumination, aerospace and biomedical engineering. The manufacturing of freeform optics is an integrated technology involving optical design,machining,moulding,measurement and characterization. Th...
متن کاملISFET Based Microsensors for Environmental Monitoring
The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of circuitry and multiple sensors in the sa...
متن کاملSilicon-on-insulator-based complementary metal oxide semiconductor integrated optoelectronic platform for biomedical applications.
Microscale optical devices enabled by wireless power harvesting and telemetry facilitate manipulation and testing of localized biological environments (e.g., neural recording and stimulation, targeted delivery to cancer cells). Design of integrated microsystems utilizing optical power harvesting and telemetry will enable complex in vivo applications like actuating a single nerve, without the di...
متن کاملOptical Tecnology Developments in Biomedicine: History, Current and Future
Biomedical optics is a rapidly emerging field for medical imaging and diagnostics. This paper reviews several biomedical optical technologies that have been developed and translated for either clinical or pre-clinical applications. Specifically, we focus on the following technologies: 1) near-infrared spectroscopy and tomography, 2) optical coherence tomography, 3) fluorescence spectroscopy and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 92-C شماره
صفحات -
تاریخ انتشار 2009